Confidence Intervals for AP Statistics

Proportions

Name	Statistic	Parameter	Conditions	Formula	Calculator
One-sample z- interval for a proportion	ŷ	р	 Random sample n ≤ 10%N np̂ ≥ 10 and n(1 − p̂) ≥ 10 	$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	1-PropZInt
Two-sample z- interval for a difference in proportions	$\hat{p}_1 - \hat{p}_2$	$p_1 - p_2$	 Independent random samples or randomized experiment n₁ ≤ 10%N₁ and n₂ ≤ 10%N₂ n₁p̂₁ ≥ 10, n₁(1 - p̂₁) ≥ 10 n₂p̂₂ ≥ 10, n₂(1 - p̂₂) ≥ 10 	$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$	2-PropZInt

Means

Name	Statistic	Parameter	Conditions	Formula	Calculator
One-sample <i>t</i> - interval for a mean or paired t-interval	$ar{x}$	μ	 Random sample or randomized experiment n ≤ 10%N Population distribution is ≈ normal (given or sample data show no strong skew or outliers) or n ≥ 30 	$\bar{x} \pm t^* \frac{s}{\sqrt{n}}$ df = n - 1	TInterval
Two-sample <i>t</i> - interval for a difference in means	$\bar{x}_1 - \bar{x}_2$	$\mu_1 - \mu_2$	 Independent random samples or randomized experiment n₁ ≤ 10%N₁ and n₂ ≤ 10%N₂ For each sample or group, the population distribution is ≈ normal (given or sample data show no strong skew or outliers) or n ≥ 30 	$(\bar{x}_1 - \bar{x}_2) \pm t^* \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}$ df = smaller of n ₁ – 1 and n ₂ – 1 OR df = use technology	2-SampTInt

Slope

Name	Statistic	Parameter	Conditions	Formula	Calculator
t-interval for a slope	b	β	 Relationship between x and y is fairly linear n ≤ 10%N For each x, the distribution of y is ≈ normal For each x, y has the same standard deviation Random sample or randomized experiment 	$b \pm t^* SE_b$ df = n – 2	LinRegTInt

Significance Tests for AP Statistics

Proportions

Name	Null Hypothesis	Conditions	Formula	Calculator
One-sample z- test for a proportion	H ₀ : p = p ₀	• Random sample • $n \le 10\%$ N • $np_0 \ge 10$ and $n(1 - p_0) \ge 10$	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	1-PropZTest
Two-sample <i>z</i> - test for a difference in proportions	$H_0: p_1 - p_2 = 0$	 Independent random samples or randomized experiment n₁ ≤ 10%N₁ and n₂ ≤ 10%N₂ n₁p̂_c ≥ 10, n₁(1 − p̂_c) ≥ 10 p̂_c = X₁+X₂/n₁+n₂ n₂p̂_c ≥ 10, n₂(1 − p̂_c) ≥ 10 	$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\frac{\hat{p}_c(1 - \hat{p}_c)}{n_1} + \frac{\hat{p}_c(1 - \hat{p}_c)}{n_2}}}$	2-PropZTest

Means

Name	Null Hypothesis	Conditions	Formula	Calculator
One-sample <i>t</i> - test for a mean or paired <i>t</i> -test	$H_0: \mu = \mu_0$	 Random sample or randomized experiment n ≤ 10%N Population distribution is ≈ normal (given or sample data show no strong skew or outliers) or n ≥ 30 	$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$ df = n - 1	T-Test
Two-sample <i>t</i> - test for a difference in means	$H_0: \mu_1 - \mu_2 = 0$	 Independent random samples or randomized experiment n₁ ≤ 10%N₁ and n₂ ≤ 10%N₂ For each sample or group, the population distribution is ≈ normal (given or sample data show no strong skew or outliers) or n ≥ 30 	$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}}$ df = smaller of n ₁ - 1 and n ₂ - 1 OR df = use technology	2-SampTTest

Slope

Name	Null Hypothesis	Conditions	Formula	Calculator
t-test for a slope	$H_0: \beta = \beta_0$	 Relationship between x and y is fairly linear n ≤ 10%N For each x, the distribution of y is ≈ normal 	$t = \frac{b - \beta_0}{SE_b}$	LinRegTTest
		For each x, y has the same standard deviationRandom sample or randomized experiment	df = n – 2	

Chi-Square

Name	Hypotheses	Conditions	Formula	Calculator
χ^2 test for goodness-of-fit	H ₀ : The claimed distribution of (categorical variable) is correct. H _a : The claimed distribution of (categorical variable) is incorrect.	 Random sample or randomized experiment n ≤ 10%N All expected counts > 5 	$\chi^{2} = \sum \frac{(observed - expected)^{2}}{expected}$ df = # of categories - 1	χ²GOF-Test
χ^2 test for homogeneity	H ₀ : There is no difference in the distribution of (categorical variable) across populations or treatments. H _a : There is a difference in the distribution of (categorical variable) across populations or treatments.	 Random samples from each population or randomized experiment n ≤ 10%N All expected counts > 5 	$\chi^{2} = \sum \frac{(observed - expected)^{2}}{expected}$ df = (# of rows - 1) (# of columns - 1)	χ^2 -Test
χ^2 test for independence	H ₀ : There is no association between two categorical variables in a given population or the two categorical variables are independent. H _a : Two categorical variables in a population are associated or dependent.	 Random sample or randomized experiment n ≤ 10%N All expected counts > 5 	$\chi^{2} = \sum \frac{(observed - expected)^{2}}{expected}$ df = (# of rows - 1) (# of columns - 1)	χ^2 -Test

