Stats Medic Ultimate Interpretations Guide

CED Unit 1: Exploring One-Variable Data

Standard Deviation: The context typically varies by SD from the mean of mean.

Example: The height of power forwards in the NBA typically varies by 1.52 inches from the mean of 80.1 inches.

Percentile: percentile $\%$ of context are less than or equal to value.
Example: $\underline{75 \%}$ of high school student SAT scores are less than or equal to $\underline{1200}$.
z-score: Specific value with context is z-score standard deviations above/below the mean.

Example: \underline{A} quiz score of 71 is $\underline{1.43}$ standard deviations below the mean. $(z=-1.43)$

Describe a distribution: Be sure to address shape, center, variability, and outliers (in context).

Example: The distribution of student height is unimodal and roughly symmetric. The mean height is 65.3 inches with a standard deviation of 8.2 inches. There is a potential upper outlier at 79 inches and a gap between 60 and 62 inches.

CED Unit 2: Exploring Two-Variable Data

Correlation (\boldsymbol{r}): The linear association between \underline{x}-context and \mathbf{y}-context is weak/moderate/strong (strength) and positive/negative (direction).

Example: The linear association between student absences and final grades is fairly strong and negative. ($r=-0.93$)

Example: The actual heart rate was 4.5 beats per minute above the number predicted when Matt ran for 5 minutes.
y-intercept: The predicted y-context when $x=0$ context is y-intercept.
Example: The predicted time to checkout at the grocery store when there are 0 customers in line is 72.95 seconds.

Slope: The predicted \mathbf{y}-context increases/decreases by slope for each additional $\underline{\text { x-context. }}$
Example: The predicted heart rate increases by 4.3 beats per minute for each additional minute jogged.

Standard Deviation of Residuals (s): The actual y-context is typically about \underline{s} away from the value predicted by the LSRL.

Example: The actual SAT score is typically about 14.3 points away from the value predicted by the LSRL.

Coefficient of Determination ($\boldsymbol{r}^{\mathbf{2}}$): About $\underline{r^{2}} \%$ of the variation in y-context can be explained by the linear relationship with \underline{x}-context.

Example: About 87.3\% of variation in electricity production is explained by the linear relationship with wind speed.

Describe the relationship: Be sure to address strength, direction, form and unusual features (in context).

Example: The scatterplot reveals a moderately strong, positive, linear association between the weight and length of rattlesnakes. The point at $(24.1,35,7)$ is a potential outlier.

CED Unit 4: Probability, Random Variables and Probability Distributions

Probability $\boldsymbol{P}(\boldsymbol{A})$: After many many context, the proportion of times that context \mathbf{A} will occur is about P(A).

Example: $\mathrm{P}($ heads $)=0.5$.
After many many coin flips, the proportion of times that heads will occur is about 0.5 .

Conditional Probability $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})$: Given context B, there is a $\underline{P(A \mid B)}$ probability of context \mathbf{A}.
Example: $\mathrm{P}($ red car I pulled over $)=0.48$.
Given that a car is pulled over, there is a $\underline{0.48}$ probability of the car being red.

Expected Value (Mean, $\boldsymbol{\mu}$): If the random process of context is repeated for a very large number of

Example: If the random process of asking a student how many movies they watched this week is repeated for a very large number of times, the average number of movies we can expect is 3.23 movies.

Binomial Mean $\left(\mu_{X}\right)$: After many, many trials the average \# of success context out of \underline{n} is μ_{X}.

Example: After many, many trials the average \# of property crimes that go unsolved out of $\underline{100}$ is 80 .

Binomial Standard Deviation (σ_{X}): The number of success context out of \underline{n} typically varies by $\underline{\sigma}_{X}$ from the mean of μ_{X}.

Example: The number of property crimes that go unsolved out of 100 typically varies by 1.6 crimes from the mean of 80 crimes.

CED Unit 5: Sampling Distributions

Standard Deviation of Sample Proportions ($\sigma_{\hat{p}}$): The sample proportion of success context typically varies by $\sigma_{\hat{p}}$ from the true proportion of \underline{p}.

Example: The sample proportion of students that did their AP Stats homework last night typically varies by 0.12 from the true proportion of 0.73 .

Standard Deviation of Sample Means ($\sigma_{\bar{x}}$): The sample mean amount of $\underline{\text { x-context typically varies by }}$ $\underline{\sigma}_{\bar{x}}$ from the true mean of $\underline{\mu}_{X}$.

Example: The sample mean amount of defective parts typically varies by 5.6 parts from the true mean of 23.2 parts.

CED Unit 6, 7, 8 \& 9: Inference for Proportions, Means, and Slope
Confidence Interval (A, B): We are $\underline{\%}$ confident that the interval from \underline{A} to \underline{B} captures the true parameter context.

Example: We are $\underline{95 \%}$ confident that the interval from 0.23 to 0.27 captures the true proportion of flowers that will be red after cross-fertilizing red and white.

Confidence Level: If we take many, many samples of the same size and calculate a confidence interval for each, about confidence level $\%$ of them will capture the true parameter in context

Example: If we take many, many samples of size 20 and calculate a confidence interval for each, about 90% of them will capture the true mean weight of a soda case.
p-value: Assuming \boldsymbol{H}_{0} in context $\left(H_{0}\right)$, there is a p-value probability of getting the observed result or less/greater/more extreme, purely by chance.

Example: Assuming the mean body temperature is $98.6^{\circ} \mathrm{F}\left(H_{0}: \mu=98.6\right)$, there is a 0.023 probability of getting a sample mean of $97.9^{\circ} \mathrm{F}$ or less, purely by chance.

Conclusion for a Significance Test: Because p-value \underline{p}-value $\leq / \geq \underline{\alpha}$ we reject / fail to reject H_{0}. We do / do not have convincing evidence for $\underline{\boldsymbol{H}}_{a}$ in context.

Example: Because the p-value $\underline{0.023} \leq \underline{0.05}$, we reject H_{0}. We do have convincing evidence that the mean body temperature is less than $98.6^{\circ} \mathrm{F}\left(H_{a}: \mu<98.6\right)$.

Type 1 Error: The $\underline{\boldsymbol{H}}_{0}$ context is true, but we find convincing evidence for $\underline{\boldsymbol{H}}_{\boldsymbol{a}}$ context.
Example: The mean body temperature is actually $98.6^{\circ} \mathrm{F}$, but we find convincing evidence the mean body temperature is less than $98.6^{\circ} \mathrm{F}$.

Type II Error: The $\underline{\boldsymbol{H}}_{a}$ context is true, but we don't find convincing evidence for $\underline{\boldsymbol{H}}_{a}$ context.

Example: The mean body temperature is actually less than $98.6^{\circ} \mathrm{F}$, but we don't find convincing evidence that the mean body temperature is less than $98.6^{\circ} \mathrm{F}$.

Power: If $\underline{\boldsymbol{H}}_{a}$ context is true at a specific value there is a power probability the significance test will correctly reject $\underline{H_{0}}$.

Example: If the true mean body temperature is $97.5^{\circ} \mathrm{F}$, there is a $\underline{0.73}$ probability the significance test will correctly reject $\underline{H_{0}}: \mu=98.6$

Standard Error of the Slope ($\boldsymbol{S} \boldsymbol{E}_{\boldsymbol{b}}$): The slope of the sample LSRL for $\underline{\text { x-context }}$ and \mathbf{y}-context typically varies from the slope of the population LSRL by about $\underline{S E_{b}}$.

Example: The slope of the sample LSRL for absences and final grades typically varies from the slope of the population LSRL by about 1.2 points/absence.

